A Closer Look: Standard® Gasoline Direct Injection (GDI)

A Closer Look: Standard® Gasoline Direct Injection (GDI)

Sponsored by Standard®

Gasoline direct injection (GDI) is used on most new vehicles and requires a different approach to diagnosis and service. GDI technology has been an integral part of helping to improve fuel economy while reducing emissions, and can be found on more than half of the U.S. fleet. In fact, the use of GDI engines has grown by over 600% since 2010. While GDI systems have been largely useful, these systems encounter specific failures and require an understanding of how they work and how to test them when they set a code.

GDI Spotlight

The aftermarket-leading Standard® GDI Program is anchored by Injectors, and also includes High-Pressure Fuel Pumps, Fuel Injector Rail Kits, Fuel Pressure Sensors, Fuel Feed Lines, Fuel Pressure Regulators, and Fuel Pressure Sensor Connectors for a complete line of GDI components.

Standard® GDI Injectors are always new, not remanufactured.

Standard’s GDI line-up includes hundreds of part numbers for domestic and import vehicles, including applications through 2022, providing industry-leading late-model coverage. To learn more, visit www.StandardGDI.com.

Why GDI?

In order to meet tighter emission and CAFE (corporate average fuel economy) standards, manufacturers began introducing GDI engines around 2006. The fuel injectors on a GDI engine inject fuel directly into the combustion chamber. Injection takes place primarily on the intake stroke and, in some cases, on the compression stroke as well. As engine speed increases, the amount of time available to inject fuel decreases. In order to increase fuel delivery in a shorter amount of time to produce more power, the fuel pressure is increased. The fuel rail pressure on a GDI engine typically ranges from 300 PSI at idle to 2200 PSI at full load.

Above is a typical GDI fuel system layout. A low-pressure fuel pump is located in the fuel tank. The low-pressure pump supplies a cam-driven mechanical high-pressure pump with 50-80 PSI of fuel. The mechanical pump then generates the high pressures needed and delivers the high-pressure fuel to the fuel rail. The amount of pressure generated in the fuel rail is determined by an ECM-controlled fuel volume solenoid that is typically part of the mechanical pump.


There are times when a technician will have to perform a GDI diagnostic test drive to evaluate the GDI system and identify faults. This can help with identifying intermittent faults or system performance that is not yet serious enough for the ECM to set a diagnostic code. The scan tool should be setup to record, at the minimum, the following PIDs:

  • Engine RPM
  • Throttle angle
  • Desired fuel rail pressure
  • Actual fuel rail pressure
  • GDI pump volume command

Tech Tip: There may be times when the actual fuel rail pressure PID is not available on the OE side of the scan tool. If this is the case, or if the technician’s scan tool cannot display OE scan data, the generic side of the scan tool can be used. The SAE J1979 standard is by used by manufacturers to determine required PIDs for generic OBD. The J1979 standard includes the fuel rail pressure PID for GDI engines.

In order to collect the necessary data for analysis, the vehicle should be driven at various engine loads. The scan tool should be set up to record the engine data PIDs selected earlier prior to the test drive. After allowing the engine to idle, the technician should accelerate and hold the APP at about 20%. Then, command a wide-open throttle period, return to a 20% APP command, and finally come to a stop and let the engine idle.

With the data collected, it will need to be reviewed to specifically examine the desired versus actual fuel rail pressure. Was the fuel system able to deliver the desired fuel pressure? If not, the fuel pump regulator command needs to be examined. Was the ECM trying to increase the amount of fuel delivered to the high-pressure pump?

Servicing GDI

Tech Tip: Even with the engine OFF, the pressure in the fuel rail can be very high. Attempting to remove high pressure fuel lines at this time can be dangerous.

Prior to servicing components on a GDI fuel system, it is crucial that there is no pressure retained in the fuel system. Some vehicles can be depressurized using a scan tool command to the ECM, while others will require the removal of the low-pressure pump fuse or relay. The vehicle should then be started and idled until it runs out of fuel and dies.

Before disassembling a GDI fuel system for service, it is very important to read service information. Most high-pressure fuel lines are a one-time-use component. When they are torqued down, they will distort to fit, ensuring a tight seal. In the above example, you’ll see a GM 3.6L V6 with the intake manifold removed. Note the yellow tags on the high-pressure lines indicating that they must not be reused. Other manufacturers may not use labels, instead recommending within the service information to discard these lines after removal. Reusing these lines can result in a high-pressure fuel leak which could cause a catastrophic fire.

It will also be necessary to identify all of the tools necessary to complete the task of replacing the fuel injectors. Service information should be read carefully for this information. Once components such as the intake manifold have been removed in order to access the fuel rail, it is important to note that there are two basic types of injector-to-fuel-rail connections. On some applications, the fuel injectors are clipped onto the fuel rail. When removing the fuel rail on these applications, the fuel rail and all of the fuel injectors will come off the engine in one piece.

Standard® GDI Injectors are always new, never remanufactured. They are precision engineered and rigorously tested to ensure optimal performance.

On applications that do not use a retaining clip, when you remove the fuel rail you may find that some of the fuel injectors have remained in the cylinder head while the rest come out still attached to the fuel rail. With the fuel injectors removed, be sure to clean the ports in the cylinder head with a correctly sized wire brush and replace the seals on any fuel injectors that are to be reused. Be sure to finish the installation by using the appropriate torque specification and tightening procedure.

For tips on replacing GDI components, search “GDI” on the Standard Brand YouTube channel.

Sponsored by SMP.

You May Also Like

Extended Engine Oil Change Intervals / A false economy?

While most everyone is aware that the cost of used and new vehicles has gone up over the past few years, it is not the only expense related to owning a vehicle that has significantly increased over that time. The latest 2023 AAA data found that the average cost of new vehicle ownership has soared

While most everyone is aware that the cost of used and new vehicles has gone up over the past few years, it is not the only expense related to owning a vehicle that has significantly increased over that time. The latest 2023 AAA data found that the average cost of new vehicle ownership has soared to $12,182 a year. This is a 13% increase from 2022. With the cost of preventative maintenance also rising, OEMs have chosen to reduce these costs by extending lubricant drain intervals for engines and transmissions, citing “improved” or “synthetic” oils as the reason. What is most concerning is the OEM extension of critical preventative maintenance requirements for the new high output “fuel efficient” turbocharged gasoline direct injection (TGDI) engines.

Engineering For Excellence – MEYLE HD Solves Tesla Noisy Control Arm Issues

By Stefan Bachmann, Head of Steering & Suspension, MEYLE HD The effort that goes into creating one of the world’s most technologically advanced electric vehicles is staggering, and the engineers at Tesla who developed the Model 3 and the Model Y should be proud. However, they also should tip their caps to the engineering team

A Closer Look: Servicing Electric and Hybrid Vehicles

Hybrid vehicles have been sold in the U.S. for over 20 years. As hybrids continue to grow in popularity, and as full electric vehicles have entered the market in the past several years, they have brought with them numerous service opportunities for aftermarket repair facilities. Whether shops dive in and get involved with replacing batteries,

Advanced Filtration Is Key to Vehicle Longevity

Let’s face it, we love our cars – and we drive a lot. According to statistics from the U.S. Department of Transportation, Americans drive more than 13,000 miles per year on average. Although the miles continue to rack up on our cars and trucks, their overall shelf life keeps increasing. Once upon a time, vehicles

What Causes Fuel Pumps to Fail?

Like most vehicle components, natural wear and tear is the unavoidable cause for parts replacement. Fuel pumps are often out of sight and out of mind for most shop visitors. That’s because they are an as-needed repair and not typically a part of ongoing maintenance. Nevertheless, if you diagnose fuel pump failure, customers will want

Other Posts

Oil Filter Housing

Learn about the common issues with the original design and how Standard’s improved housing addresses leaks and durability.

SMP Releases 2023 Corporate Sustainability Report

The report provides insight into the company’s initiatives, future goals and achievements, Standard Motor Products said.

SMP Introduces 208 New Part Numbers in January

The release provides new coverage in 72 product categories and 115 part numbers for 2022, 2023 and 2024 model-year vehicles.

SMP January
GB Remanufacturing Expands GDI Program

The additional part numbers cover more than 24 million vehicles in operation.

GB Reman