A Closer Look At Electronic Throttle Bodies

A Closer Look At Electronic Throttle Bodies

The benefits of an ETB include overall reliability, since there are far fewer mechanical components that can wear out.

Many years ago, I watched a co-worker pulling into the parking lot in his classic Chevy convertible. He seemed to be waving at someone or maybe shooing a fly away. I wasn’t really sure, and I didn’t think enough of it to ask, but later in the afternoon I learned what he was doing.

It turns out the accelerator cable had broken. To make it to work, he connected a piece of string to the carburetor linkage, then ran it through one of the hood louvers and over the top of the windshield so he could control the throttle. “Hey, it worked,” was his response to friendly ribbing.

The fact is, it did work, and as rudimentary as it may have been, it’s this type of simple mechanical connection between your foot and your engine (although a little better than string) that has allowed us to make a car go since the days when they were no more than a horseless carriage. Either a mechanical linkage or a cable was utilized to connect the throttle control inside the car to the carburetor or fuel-injection throttle body on the engine.

First showing up in the late 1980s, the electronic throttle body (ETB) is now the device that controls airflow into the engine on the majority of the vehicles on the road today. What is an ETB? Like a lot of modern electronics, the name can seem daunting, but they’re pretty simple when you break it down.

The chronology goes like this: Carburetors were simple mechanical devices. All you were doing was controlling air flow into the engine. The carburetor did the rest. Next, along with fuel injection, came the throttle body. The computer, fuel injectors and engine sensors worked together to control the amount of fuel supplied to the engine. All you were doing was controlling the air flow through the throttle body into the engine.

So what’s quicker, more efficient and more dependable than a mechanical connection? Electricity of course – making the ETB the only logical step in powertrain management.

How do they work? An ETB is a throttle body that looks in appearance and function as they always have, with the exception of a small electric motor in place of a mechanical linkage. The electric motor, in response to commands received from either the ECM (engine control module) or PCM (powertrain control module), is what opens and closes the throttle plate inside the throttle body. The only thing connected to an ETB is wires.

Different manufacturers use different systems, but the basis of ETB operation is the same regardless of what your customers are working on. The accelerator pedal in the vehicle contains sensors that transmit information about pedal position to either the ECM, PCM or in some cases, a dedicated ETB module.

The ETB system logic takes into account the information from the accelerator pedal as well as a number of different systems and sensors such as vehicle cruise control, speed sensor and MAF (mass airflow) sensor and then determines how far to open the throttle plate inside the throttle body.

And finally, there are additional sensors within the throttle body that transmit information back to the ECM so that it knows that the requested throttle position has been met.

The benefits of an ETB include overall reliability, since there are far fewer mechanical components that can wear out or require adjustment over time. Vehicles accelerate smoother with an ETB and they provide the precision required for the advanced systems in modern vehicles such as traction control, launch control and adaptive cruise control. Is there a negative side to an ETB? Not from where I sit. Most new technology, especially in the automotive world, gets a bad rap until people become comfortable with it. Sure, it might be easier to diagnose a broken throttle cable than an electronic or wiring problem, but this is today’s world and today’s technology. It’s better than it ever was, and those who learn it are ultimately those who love it.

You May Also Like

Gaskets vs. Seals

Whether your customer asks for a gasket or a seal, you know one thing: They’re trying to stop a leak.

Gaskets and Seals

Terminology is one of the hurdles we face day in and day out in the automotive industry. It varies between automakers, parts suppliers, technicians and consumers. Gaskets and seals are some of those terms that are easily mixed up from time to time. So, what’s the difference between a gasket and seal, since they’re both designed to do the same thing?

Check the Part: Return Guide for CV-Joint Kit

Dorman offers these three tips to help to determine if it’s a valid warranty claim.

CV Joint Kit
Selling the Complete Brake Job

These simple guidelines will help you ensure that your customers have everything they need.

Brake Job
Getting to Know Driveshaft Couplers

This often-overlooked undercar part
ensures a smooth transfer of rotational motion.

Driveshaft Couplers
Solenoids: Energizing Motion

Automotive solenoids translate electrical impulses into mechanical movement.

Solenoids

Other Posts

Assault on Batteries

Even EV batteries aren’t immune to the effects of extreme winter weather.

EV Batteries
Why Do Spark Plugs Get Dirty?

Being able to answer this question can help prevent them from failing prematurely.

Spark Plugs
All Aboard the CAN Bus

With the proliferation of computer electronics, there were just too many sensors and wires.

CAN Bus
The Evolution of Automotive Fuel Systems

The frequency of changes has increased in recent decades.

Fuel Systems